
Journal of  Statistical Physics, Vol. 75, Nos. 5/6, 1994 
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We show that the Markov semigroups constructed by Misra, Prigogine, and 
Courbage through nonunitary similarity transformations of Kolmogorov 
systems are not implementable by local point transformations, i.e., they are not 
the Frobenius-Perron semigroups associated with noninvertible point trans- 
formations, in contrast with the semigroups obtained by coarse-graining 
projections. Our result is a straightforward generalization of the proof of the 
nonlocality of the similarity transformation given by Goldstein, Misra, and 
Courbage and also of the previous illustration by Misra and Prigogine for the 
baker transformation and completes the characterization of the Misra- 
Prigogine-Courbage semigroups. 
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groups; irreversibility; intertwining transformations. 

1. INTRODUCTION 

The problem of irreversibility in statistical physics lies in understanding the 
relation between reversible dynamical laws and the observed entropy- 
increasing evolutions. The prototypes of such irreversible evolutions are 
Markov processes such as kinetic or diffusive processes. The nonunitary 
transformation theory of irreversibility, originated by Prigogine et  aL 1~'21 

and carried forward by Prigogine, Misra, Courbage, and others, 12-131 poses 
the question in the following way: what types of unitary groups U, can be 
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intertwined with Markov semigroups M,, t >~ 0, through nonunitary trans- 
formations A: 

M t A  = A U , ,  t>~O (1) 

Here U, is the unitary evolution of square-integrable densities associated 
with the dynamics S,, t e ( - 0 %  + oo) or t = 0, _ 1, -I-2 ..... on the phase 
space Y equipped with a a-algebra ~' and an invariant measure # which 
describes equilibrium: 

U,p(y )  = p(S; - ly )  (2) 

The irreversible Markov semigroup M,, t~>0, on the space ~q,Z(y, g$, p) 
has the following properties: 

1. M t are contractions, 

IlM, pll ~ ~< Ilpll z (3) 

2. M, preserve probabilities, i.e., 

g , p > ~ O  if p~>0 (4) 

The last condition means that 

M~I = 1 (6) 

Properties (6) and (3) imply on ~ Z ( y ,  ~ ,  la) that "3) 

. 

M, 1 = 1 (7) 

Irreversible approach to equilibrium is described by the condition 

[ IM,p -  1112 ~ 0 as t ~ o o  (8) 

M ,  = A U,A - ~ (9) 

or by a coarse-graining projection A = p,(3.9.1o. 12) 

M , = P U ,  P (10) 

for every square-integrable density p. 
Misra, Prigogine, and Courbage showed in fact that the unitary evolu- 

tion U, of highly unstable dynamical systems, such as Kolmogorov systems 
defined in Section 2, can be intertwined (1) either by a similarity (4-8'9'1''12) 
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with irreversible Markov semigroups. The nonunitary intertwining trans- 
formation A effectively incorporates the objective limitations to predic- 
tability due to the dynamical instability. 

As the action of A is highly delocalizing, ~6~ such a transformation 
cannot be the multiplication operator by a function on the phase space, 
nor can it be the induced operator from an underlying point transforma- 
tion of the phase space. One would therefore expect the resulting Markov 
semigroup M, will also not be implementable by point transformations. 
However, in the case of coarse-graining projections, Antoniou and 
Gustafson C~3~ showed that the resulting irreversible Markov semigroup (10) 
is implementable by a noninvertible point transformation, i.e., M, >/0, is 
the exact Markov semigroup associated with a noninvertible point trans- 
formation ~,, t/> 0, acting on the coarse-grained phase space ~" with 
respect to the K-partition (see Section 2) of the original phase space Y: 

M~p(.~)=p(S,~) ,  t>~O (11) 

We use the above expression (11) for the adjoint Koopman semigroups 1141 
because the transformations S, are not invertible. Therefore the corre- 
sponding expression (2) should be modified to the Frobenius-Perron 
operators formula, c14) which takes into account the inverse branches of ,~,. 

We remark in passing that the implementability of the Misra- 
Prigogine-Courbage semigroup M, associated with the coarse-graining 
projection P not only shows that it is possible to intertwine reversible 
dynamics with irreversible dynamics, but was also used ~3) to prove a 
converse to the Misra-Prigogine-Courbage result, namely that irreversible 
Markov semigroups arising from projections can be dilated to reversible 
dynamics. The positive dilation construction of ref. 13 is based upon 
Rokhlin's ~5,~4) natural extension of exact systems to Kolmogorov systems. 

In view of the result in ref. 13 it is necessary to know also whether the 
semigroup (9) associated with similarities is implementable, i.e., if it is also 
the Frobenius-Perron semigroup associated with a noninvertible point 
transformation. Misra and Prigogine ~7~ have shown that for a specific 
model, the baker system, with a specific choice of A transformation the 
resulting semigroup is nonlocal, i.e., nonimplementable. The purpose of this 
paper is to generalize this result. We show that the semigroup (9), contrary 
to the semigroup (10), is nonlocal for all Kolmogorov systems and for all 
choices of A transformations. The idea of the proof is essentially the same 
as for the nonlocality of the A transformation as given by Goldstein et aL ~6~ 
However, we relax the condition of strict monotonicity for the function 
A(r) while retaining the condition A( r )<  A(oo). 
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2. T H E  M I S R A - P R I G O G I N E - C O U R B A G E  C O N S T R U C T I O N  

Before we present the Misra-Prigogine-Courbage similarity transfor- 
mation we recall the definition of Kolmogorov systems. Kolmogorov 
systems ~16"t4~ are highly unstable dynamical systems S,, t real or integer, 
characterized by a measurable partition ~ (K-partition) of the phase space 
Y which evolves asymmetrically, namely: 

(i) r is progressively refined: 

S,~<<. <~S,.~, t<t' (12a) 

(ii) 

(iii) 

approaches the finest point partition v in the far future 

V S,~=.v 
t>~O 

(12b) 

approaches the coarsest one-cell partition e in the far past 

A S,r (12c) 
t~<O 

The conditional expectations P, over the cells of the time-evolved 
K-partition S,~, t real or integer, define a family of projections which 
inherit the properties of the K-partition: 

(i) P,<~Pc, 

(ii) s-lim P , = I  
I ~ o o  

t<l' (13a) 

13b) 

(iii) s-lim P,=Pe (13c) 

I is the identity operator on L, e2(Y, ~ ,  p) and P,. is the orthoprojection 
onto the one-dimensional space of constants which includes the equilibrium 
density, 

PeP= frdl~ p 

As the K-partition becomes more and more refined in the future, the 
observation of the system through the K-partition becomes more and more 
operationally unattainable. This limitation is expressed through the A 
transformation, which is defined on the space ~2( y, e~,/1): 

f + or Ap= A(z)dP~p+Pep for K-flows (14a) 

+,x;, 

Ap= ~ A(T)(P~-P~_I)p+P,, 0 for K-cascades (14b) 
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A(T) is any positive function on the reals or integers with the following 
properties: 

(a) A is decreasing with A ( c o ) = 0  and A ( z ) < A ( - c o ) ~ < l ,  for all 
t e R. Here we relax the original assumption of Misra, Prigogine, 
and Courbage that A is strictly decreasing 

(b) .4 is a logarithmically concave function. 

The properties (a) hnd (b) imply that the function A has the form 

A ( ~ ) = e  - ~ )  (15) 

where ~b(z) is a positive convex function which increases to + co as ~ --+ co. 
A specific choice for A is the function 

1 
.4(,) = (16) 

l + e  ~ 

The transformation (16) was used by Misra and Prigogine 17~ in their study 
of the baker transformation. A further restriction on the possible forms of 
A(T) was proposed by Suchanecki It2~ on the basis of Gnedenko's theorem. 

The transformation A leads to the irreversible Markov semigroup (9) 
on the space .oga2(y, ,~,r 

f+oo A(z._)t) dP ~ M, = A U,A - J = U, + Pe U, (17a) 
_ ~  A(~ 

for flows, t >/0, 

M,= AU, A -l  
+ ~  A(T) 

= Y~ A ( ' r -  t) - o o  

- - ( P ~ - P ~ _ ~ )  U,+PeU, (17b) 

for cascades, t positive integer. 
The irreversible semigroup properties of M, are guaranteed because 

the function A ( z ) / A ( z -  t) is a bounded, decreasing function of z for every 
t > 0/4-6~ A simple proof of this fact goes as follows: It is enough to show 
that the function z ~ - - ~ ( r - t ) - ~ b ( z )  is decreasing. Let z~<z2;  then 
0 < t/(r2 + t -  Zl) < 1. Since the function q~ is convex, we have 

T 2 - - T  I 
~b(zl - t) + ~b(z2) t ~ ( z , - t ) +  (b(z2) 

T2-Jt- I - -  Z l  T2-[ -  t - -  T ~ 

T 2 - -  T 1 l 
+ ~(r l  -- t )  + ~(~2) 

T 2 q - t - - z  I z 2 + t - - z ~  

>~d/(t(zl--t-)+-- (z'---~2~Z')Z2)+O((r2--rl)(zl--t)+tz2)z2+t_z 1 z2+t - -Z  , 

= ~ ( ~ 2 -  t) + ~ ( r , )  

822/75/5-6-10 
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which implies the desired result 

~(zl - t) - ~b(zl) ~> ~b(z2 - t) - ~(z2) 

We remark before closing this section that  the semigroup M,  has the 
following property,  which we shall need in the next section. 

L e m m a  1. The opera tor  

f 
+ o o  

Mt -- P~ U, dg(r),  
o o  

t>~0 (18) 

with 

/l(r) 
g(r)  - (19) 

A(~-- t )  

vanishes or is positivity-preserving on 0~2( y, ~,/./). 

Proof. Using integration by parts,  we can write M, as the following 
Lebesgue-Stieltjes integral (see L e m m a  in ref. 9, p. 75)): 

f~ ( A(~) "~ A(~) M , =  -oo P~U, d A(-~_-~j + ,-lim+~ A(z - t--) U' 

A(,) 
lim - -  P~ U, + P,, U, . . . .  A(T-- t) 

i v ( A(~)_'~ A(~) 
= -oo P ,  U, d A(r - t ) l  + T-lim+o~ A(~ - t""'-~ U, 

where we have used 

.4(3) 
lim - -  - 1 

~ - - ~  A ( r -  t) 

Since the function A ( z ) / A ( z -  t) is positive and decreasing, the limit 

A(T) 
lim - -  

~- ~ A(~ - t) 

also exists and it is nonnegative and (18)fol lows immediately. Goldstein et 
aL (I6) proved essentially the same result under  the s tronger  assumpt ion  that  
the function A ( z ) / A ( z -  t) is strictly monotonical ly  decreasing. 
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3. N O N I M P L E M E N T A B I L I T Y  OF THE S E M I G R O U P  A U r A  -1 

The result is expressed as the following: 

T h e o r e m .  The semigroup M,=AU, A -l, t>~O, is not implemen- 
table, i.e., there does not exist a measurable point transformation S, of Y 
such that S, preserves # and for which 

M~p(y)=p(S,y) for all t~>0 (20) 

Since we deal with the adjoint operator M~, it is convenient to use the 
following simple lemma. 

I . emma 2. Let M be a linear operator on .Lg '2 which is implemen- 
table, (20), by a measure-preserving point transformation $. Then for each 
measurable set ~g such that its image S(,J) under S is also measurable, the 
following holds: 

f d/~ M l a  = 0  (21) 
y -  ~(,g ) 

For any measurable set ,~ for which gzl is also Proof of Lemma 2. 
measurable, we have 

fr-.~(a) d# Mla = fr (Mla )  ' I r-.~r d#(y) = (MIa  I I r-~r 

= (la I Mt l  r-*(a))L2 = Is I r-.~(a)(S(Y)) dl~(y) 

=f~ lr_g~a)(y)dp(y)=O QED 
(,a) 

Proof of the Theorem. Now, suppose M, is implementable by the 
measure-preserving transformation ~, on Y, (20). Consider a measurable 
set A such that ~,(d) is also measurable and 0< /~ (d )<  1. Thus by 
Lemma 2, we have 

f r  dkt M, 1 = 0 (22) A 
$,( ,J )  

However, similar to ref. 6, we shall show that 

fBdl2 M, l,~>O for each measurable B with #(B) > 0 (23) 

which contradicts Lemma 2. 
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Indeed, using Lemma 1 in Section 2 and applying Fubinrs theorem, 
we have 

_o P~U,l,adg(r) oo (faP~Utla isdlt M, l~>~ fsdp i~o =~o~ dlt) dg(z) (24) 

but U,I,~ = ls, l~ and 

P~Is,<~I--* Pels, I,~=#(S,(A))=p(A) when r ~ - o o  

Therefore 

sdpP~U,l~la(A)p(B) when r ---, - o o  (25) 

Consequently there is a number z o such that for z < T O 

fBdp PTU, la> �89 #(B) 

Then, using (24) and (25), we obtain 

IBdl-tM, l,a>~I~:oo(IBdl~P~U,l,a) dg(r) 

> �89 --g( -- oo)) > 0 

where the inequality g ( % ) - g ( - o o ) > O  follows from the fact that 
A ( r ) <  A ( - ~ ) .  

The proof for cascades follows if we extend the function A(T), 
r = 0, + 1, _+ 2 ..... to the whole real line in such a way that, for r < x < ~ + 1, 
the value A(x) is equal to the value on the segment joining the points 
(~, A(T)) and ( r +  1, A ( r +  1)). 

The proof follows also from the result of Goldstein et aL c6~ The point 
is that the argument that if A(r) is strictly monotonically decreasing, then 
the transformation A is positivity improving, given on p. 121 of ref. 6, also 
proves that the same conclusion follows, without "strictly," provided 
A(z) < A(-c~). This is because the integrand on the right-hand side of the 
key inequality on line 12 of p. 121 of ref. 6 has a positive limit as ~ ~ - ~ ,  
as stated on line 17. It follows immediately that the RHS is positive, since 
every interval ( - ~ , r )  is now assigned positive measure, namely 
A ( -  ~ ) - A ( T ) .  Moreover, the conditions assumed on A(r), corresponding 
to (a) and (b) in this paper, guarantee that .4,(z) = A(~ + t)/A(r) on p. 122 
of ref. 6 satisfies .4,(T)< 1 = ~ , ( - c ~ ) ,  as well as being decreasing, so that 
the semigroup is in fact nonimplementable. 
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However, because of the importance of the result also in connection 
with recent developments, t~3~ we presented a suitably streamlined presenta- 
tion of the nonlocality of the Misra-Prigogine-Courbage semigroup. 

4. C O N C L U D I N G  R E M A R K S  

1. Our results together with the result in ref. 13 completes the 
characterization of the semigroups constructed by Misra, Prigogine, and 
Courbage in their theory of irreversibility. Namely the semigroups obtained 
through coarse-grained projections (10) are locally implementable by point 
transformations] TM while the semigroups obtained by nonunitary inter- 
twining transformations (9) are not locally implementable. 

2. As the semigroup (9) arising from similarities is nonimplementable 
by point transformations, it is not possible to construct unitary dilations 
through the natural extension t~5'14~ as in the case of the semigroups (10) 
arising projections. ~3~ However, one can always construct t2~l more general 
dilations of irreversible Markov semigroups which can also be applied to 
the nonimplementable semigroup (9). 

3. The space ~r in the formulation and discussion of the problem 
can be replaced by any space s 1 ~< p < ~ (see ref. 12 for the construc- 
tion of M, in this case). 

4. We have shown the nonlocality of the Misra-Prigogine-Courbage 
semigroup which provides a time-asymmetric representation of the unstable 
dynamical systems. Our result shows that the specific illustration of Misra 
and Prigogine tT~ is true in general. The nonunitary similarities A provide 
nonlocal representations of Kolmogorov systems. This result is in conform- 
ity with our recent result ~7~ that the baker transformations admit nonlocal 
spectral decompositions in extended functional spaces without nonunitary 
similarities. Nonlocality is therefore a typical property of intrinsically irre- 
versible systems, t2' ~8-2o~ 
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